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SIMF'LIFIED CALCULATION OF TRANSITION MATRICES 

FOR OPTIMAL NAVIGATION 

By John S. White 
Ames Research Center 

SUMMARY 

This paper presents t he  r e s u l t s  of a study aimed a t  simplifying the  
equations used when applying the  Kalman f i l t e r  t o  space navigation. One f r e ­
quently used method f o r  generating the  t r a n s i t i o n  matrix is t o  in tegra te  t he  
perturbation equations of motion. An a l t e r n a t e  approach considered here gen­
e ra t e s  approximate matrices d i r e c t l y  from the  g rav i t a t iona l  po ten t ia l .  With 
t h i s  scheme, the  t r a n s i t i o n  matrices can be generated much more quickly and 
with smaller computer storage requirements than before.  Using these approxi­
mate matrices f o r  navigation i s  equally as good a technique as the o r ig ina l .  

INTRODUCTION 

In previous s tud ies  concerned with space navigation ( r e f s .  1-6) the  use of 
an optimal f i l t e r  f o r  processing the data  has been considered. These s tudies  
have shown t h a t  such a f i l t e r  permits accurate e x t r a t e r r e s t r i a l  navigation. 
Since the  computations required a r e  f a i r l y  complex, it would be desirable  t o  
see w h a t  s implif icat ions could be made without too much l o s s  of accuracy. 

In t h i s  study we w i l l  consider the  p o s s i b i l i t y  of using simpler (and pos­
s i b l y  l e s s  accurate)  methods f o r  computing the  t r a n s i t i o n  matrix. l 'his matrix 
is  used i n  space navigation calculat ions t o  r e l a t e  deviations of the  t r a j e c t o r y  
a t  one time t o  those a t  another.  Thus, 

where q ( t ; t 0 )  i s  the  t r a n s i t i o n  matrix from to t o  t ,  and x ( t o )  and x ( t )  
represent the  s t a t e  a t  two d i f f e ren t  times. 

In  t he  previous work the  t r a n s i t i o n  matrix has been obtained by in tegra t ­
ing the  perturbation equations of motion ( r e f .  1, appendixes B and E ) .  This 
approach u t i l i z e s  a reference t r a j ec to ry  (obtained by integrat ion of the  t r u e  
nonlinear equations of motion) t o  compute the  coef f ic ien ts  of t he  per turbat ion 
equations and gives  a t r a n s i t i o n  matrix whose accuracy i s  l imited only by the  
accuracy of integrat ion.  The computational procedure, however, is qui te  
complex. 

Two possible means of simplifying t h i s  computation w i l l  be considered 
here.  F i r s t ,  one can approximate the  t r a n s i t i o n  matrix by a power s e r i e s  i n  
the  two var iables  t and to, and then use t h i s  s e r i e s  t o  compute the  cp matrix; 
second, one can der ive a s implif ied expression f o r  the  matrix which is  a 



function o f  t h e  p a r t i a l s  of the  grav i ta t iona l  f i e l d  and t h e  time increment. 
For both cases the  necessary equations w i l l  be derived and r e s u l t s  presented 
and compared with t h e  results obtained by using t h e  t r u e  matrices, obtained by 
integrat ing t h e  per turbat ion equation. 

ANALYSIS 


I n  the  previous s tud ies  (refs. 1-3) t h e  t r a n s i t i o n  matrix has been 
obtained by integrat ion of t he  perturbation equations of motion. The d i f fe r ­
e n t i a l  equation governing the  motions of t he  s t a t e  var iab le  x (composed of 
th ree  posi t ion and three  ve loc i ty  components) i s  

k ( t >  = F*( t )x ( t )  (1) 

The F* matrix can be par t i t ioned in to  3x3 submatrices, as.*=E 3 
where F is  t h e  gradient of the grav i ta t iona l  a t t r ac t ion .  

One of t he  propert ies  of the  t r ans i t i on  matrix is tha t  it s a t i s f i e s  the  
same d i f f e r e n t i a l  equation as does x. Thus, 

where double arguments a re  used t o  indicate  the  f inishing and s t a r t i ng  t i m e .  
The solution of t h i s  expression can be expressed as a two-dimensional Taylor 
s e r i e s  i n  to and 6 t ,  where 6 t  = t - to with the  or ig in  f o r  t and to 
assumed t o  be a t  the  start  of  the  t ra jec tory .  We then have f o r  each element 
of the t r ans i t i on  matrix 

M co 

The C i j  a r e  a set of  appropriate coef f ic ien ts  t ha t  can be determined by 
a two-dimensional curve f i t t i n g  process. That i s ,  one can evaluate ~ , ~ ( t ; t ~ )  
along some spec i f ic  reference t r a j ec to ry  by integrat ing the perturbation equa­
t ions  and then evaluate a s e t  o f  C i j  t h a t  w i l l  cause the  se r i e s  t o  converge 
t o  the  previously determined value of R , ~ .  This process m u s t  be repeated f o r  
a l l  elements of t he  matrix Q. 

This approach has two drawbacks. F i r s t ,  t he  shape of the  cp surface is  
highly i r regular  as t approaches the  time o f  periapse. This i s  demonstrated 
in  f igures  l ( a )  and (by, which are p lo t s  of two typ ica l  elements of cp. These 
a re  p lo t ted  fo r  a constant time increment, 6 t ,  and varying s t a r t i ng  time, t o .  

2 




In contrast ,  p l o t s  of these elements versus 6 t  f o r  f ixed to (not shown) are 
qui te  smooth. Thus, f o r  a good f i t ,  t he  s e r i e s  must contain high powers of 
to and therefore  a l a rge  number of terms. F i t t i n g  t h e  surface fo r  on ly  t h e  
midrange values of to one would require many f e w e r  terms. Then, however, 
some other technique would be needed t o  obtain t r a n s i t i o n  matrices a t  t h e  end 
points  of to. The other  d i f f i c u l t y  is  t h a t  t he  C i j  are evaluated along a 
spec i f ic  reference t r a j ec to ry  and would have t o  be re-evaluated f o r  d i f f e ren t  
t r a j e c t o r i e s  . 

Development of F Series  

A n  a l t e rna te  approach is  t o  expand the  solut ion of equation (3) i n  a one-
dimensional Taylor s e r i e s  i n  6 t ,  giving 

Equations f o r  the  der iva t ives  of cp can be obtained appropriately differen­
t i a t i n g  equation (3) and evaluating the  r e s u l t s  a t  t = t,. The der iva t ives  
of cp a re  

@(to;to>= F*(to) 
..
q( to ; to )  = I?*+ F*F* 
...
q( to ; to )  = %*+ 2k*F* + F*$* + F S  

e t c .  

I f  the  par t i t ioned  form of F* f rom equation (2)  i s  subst i tuted in to  
equation (6)  and these,  i n  tu rn ,  a r e  subst i tuted in to  equation (?), t he  follow­
ing expression f o r  cp r e s u l t s  



where 

6t2 -+ . . .'pl = I + F(t,) -+ $(to)6t3 
2 !  3! 

6t3cp2 = I 6 t  + F( to)  -+ . . . 
31 

where again 6 t  = t - to. 

In t h i s  equation, F may be as complex or as simple as desired,  t h a t  is, 
F may include only two-body e f f ec t s ,  or may include addi t ional  terms due t o  
oblateness and other bodies of the  so la r  system. Also it is apparent t h a t  one 
may include more o r  fewer terms i n  the  se r i e s  evaluation. For s implici ty ,  it 
would be desirable  t o  use only the  terms involving F, dropping terms involving 
powers and der ivat ives  of F. This gives an estimate of the t r ans i t i on  matrix 
as 

Since F i s  a function of  posi t ion i n  o rb i t ,  t h i s  equation can be 
evaluated e a s i l y  fo r  any t r a j ec to ry  and any time along the  t ra jec tory .  Thus, 
no reference t r a j ec to ry  i s  required. Further, it i s  r e l a t i v e l y  simple, as 
discussed i n  the  next section, t o  determine how b ig  6 t  can be allowed t o  g e t .  

Development of  Maximum Allowable Time In te rva l  

I n  using equation (8) there  i s  some maximum value of 6 t ,  beyond which 
the  neglected terms i n  t h e  se r i e s  become important. This value of  6 t  can be 
determined by equating the  f irst  term dropped with the  l as t  term kept. Since 
the  terms a l l  involve matrices, it seems reasonable t o  use the  norm o f  t he  
matrix in  the  equation. This leads t o  the following four equations. 
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If these equations a re  solved for 6 t ,  one f inds  t h a t  t he  smallest 6 t  
is obtained f romthe  last  equation, and t h i s  value of 6 t  is  used t o  determine 
a 6tma,. That is, we w i s h  t o  f ind a 6t,, such t h a t  

and then i n  evaluating equation (8),we w i l l  choose 6 t  -< k6tma,, where k i s  
l e s s  than uni ty .  

Let us define 

as being a reasonable norm t o  use i n  evaluating equation (9),and fur ther ,  l e t  
us r e s t r i c t  F t o  t he  two-body case. We then have ( r e f .  6,  eq. (6.51)) 

where p. is  the  constant of grav i ta t iona l  a t t rac t ion ;  FT = (rlYr2,r3)is  the  
posi t ion vector of t h e  vehicle  with respect t o  the  grav i ta t iona l  center; and 
r = 1 " .  

-
In  order t o  determine llF\l, we must choose t h a t  r which w i l l  maximize 

the  element of  F being considered. There a r e  r e a l l y  only two types of terms 
t o  consider - diagonal and off diagonal. A t yp ica l  diagonal term is  
f l l  = -(p/r3)[l - (3r12/r2)] which can be maximized i f  rl = r giving 
Ifllmax\= 2p/r3. A typ ica l  off  diagonal t e r m  is 
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I =which is  a maximum when r l  = r2 = r/&, giving 1 f zmax (3/2)( i -+)- mus ,  
choosing the  l a rge r  of these two values, we have 

Having determined \IF11f o r  use i n  equation (g), we w i l l  now consider ll$ll. 
Different ia t ing equation (10) gives 

where 

The evaluation of llFll i s  s l i g h t l y  more complicated since both r and v m u s t  
be considered, along with t h e i r  sca la r  product. To simplify the evaluation of 

were considered, and it w a s  assumed t h a t\\I?\\,only values of fTv/rv = 0, -1-1 
for  other values of t he  product t he  maxi" element would be nearly the  same. 
Using the  s a m e  general  method as before, we ge t  

Subst i tut ing equations (13) and (11)into  (9) and solving fo r  6tmx gives 

6tmx - r 
2v 

Thus, if 6t  = r/2v, t he  s i ze  of  the terms neglected i n  equation (8) (those 
involving I?) a r e  comparable with those retained (involving F) . It i s  
expected then t h a t  6 t  w i l l  be chosen such t h a t  6 t  -< k6tmx with k being 
1.0 or less. 

A check w a s  a l so  made on the  s i ze  of  t he  second neglected t e r m  (not given 
i n  these equations),  and it was found tha t  f o r  6 t  = 6tmx t h i s  t e r m  a t  
perigee is  s l i g h t l y  less than t h e  I? term and becomes r e l a t ive ly  smaller as 
the  distance t o  t he  cen t r a l  body increases.  Also, s ince it involves an addi­
t i o n a l  power of 6 t ,  it decreases rapidly as 6 t  is  reduced f rom 6tmax. 

In  many cases, t he  desired 6 t  (say from one observation t o  another o r  
from the  beginning t o  the  first observation) i s  l a rge r  than k6tWx, and thus 
two or more t r ans i t i on  matrices m u s t  be combined t o  give the  desired overa l l  
t r ans i t i on  matrix. For example, suppose we des i r e  t h e  matrix cp(tl;to). 
However, k6tmx(t0) = 6ta < t l  - to. W e  can r ead i ly  generate (P(ta; to),where 
ta = to + 6ta, from equation (8) .  Then consider t he  time in te rva l  from ta t o  
tl. Assuming t h a t  now k6tmX(ta) > t l  - ta, we can obtain V ( t L ; t a ) ,  and by 
multiplying we ge t  

b 



- -  

O f  course, t h i s  process may be repeated as many times as required to obtain t h e  
desired overa l l  matrix. 

Effect of Two-Body Assumption 

The previous evaluation of F involved only two-body terms. One should 
a l so  consider addi t ional  e f f e c t s ,  spec i f ica l ly ,  ea r th  oblateness and the  per­
turbing forces  of t h e  sun and moon, and should determine t h e  importance of such 
e f f e c t s  r e l a t i v e  to the  neglected terms i n  the power series expansion of F. 
Including these e f f ec t s  gives 

Ja2[(I  + 2M) (I­
re* 

where 
0 0 0­


(1-7) 


0 0 1-


It should be noted t h a t  t h i s  i s  the  matrix fo rm of t h e  perturbation equations, 
which can be obtained by p a r t i a l  d i f f e ren t i a t ion  of the  equations i n  appendix A 
of  reference 1. W e  w i l l  consider the  norms of each of t h e  terms i n  (16) 
individual ly  and consider t h e i r  r e l a t i v e  e f f e c t s .  The first three  terms have 
the  same form, and the  form of the norm has been already given i n  equation (ll). 
Thus, 
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-
The las t  term of equation (16) reaches i t s  maximum i f  r is  a l l  i n  t h e  z 
di rec t ion  with the  (3,3) t e r m  being the  l a r g e s t .  This gives approximately 

(IFJ/\ = -!kJa2[3(-4) - 3(1 + 2 -
r e  

These four components of \IF11 a r e  evaluated a t  four  points  along the  earth-moon 
l i n e  t o  g e t  representat ive values.  The points  used a r e  a t  t he  ea r th ' s  surface,  
a t  66,000 km from the  ear th ,  66,000 km from the moon ( the  sphere of inf luence) ,  
and a t  the  moon's surface.  The distance f romthe  sun w a s  assumed constant a t  
1a.u. ,  and the earth-moon dis tance was assmed t o  be 380,000 km.  

The r e s u l t s  a r e  tabulated i n  t ab le  I. A s  expected, i n  the  v i c i n i t y  of t he  
ear th  the  llFell dominates, while i n  the  v i c i n i t y  of the  moon t h e  IIFmll dominates. 
Thus, i f  only a s ingle  two-body term i s  t o  be used f o r  F, it must be switched 
between Fe and Fm i n  the  v i c i n i t y  of t he  sphere of influence, or a l te rna­
t ive ly ,  both terms can be used a t  a l l  times. The importance o f  these various 
terms w i l l  be discussed i n  the  r e su l t s  sect ion where, having determined a 
value f o r  k, we w i l l  be able  t o  estimate the  approximate s i z e  of the  higher 
order terms of the  s e r i e s  t h a t  have been re jec ted .  

DESCRIPTION OF SIMIIIATION 

I n  order t o  consider the  e f f ec t s  of using approximate t r a n s i t i o n  matrices, 
a d i g i t a l  computer program w a s  developed. This program is a modification of  
t he  one used by McLean ( r e f .  2 ) .  The pr inc ipa l  modifications were made t o  the  
navigation system equations. These equations are discussed i n  the  following 
subsection, and a re  followed by a descr ipt ion of the  t r a j ec to ry  used i n  t h e  
simulation. Other fac tors  i n  the  simulation are as used by McLean ( r e f .  2 )  and 
a l s o  by Smith ( r e f .  7 )  . 

Navigation System Equations 

When an approximate t r ans i t i on  matrix i s  used i n  connection with the  
equations f o r  t he  optimal f i l t e r ,  the  overa l l  system becomes suboptimal. A s  a 
r e s u l t ,  t he  e r ro r  covariance matrix obtained i s  only an approximation and i s  
not a proper measure of the  t r u e  estimation e r ro r .  A t r u e  measure - t h a t  is ,  
a t r u e  covariance matrix o f  estimation e r ro r  - requires  addi t ional  equations. 
The optimal f i l t e r  equations have been developed previously ( r e f s .  1and 2),1 
as well as the  equations giving the  s t a t i s t i c s  of suboptimal f i l t e r s  ( r e f .  7 ) .  
The necessary equations w i l l  be repeated here f o r  convenience. It is  assumed 
t h a t  observations a re  uncorrelated from one time t o  t he  next.  

____ _ _  _ _  .. - .  ­
%bviously-,= the- Kalman f i l t e r  technique as applied t o  the  navigation prob­

l e m  i s  not optimal, s t r i c t l y  speaking, since the  theory assumes a l i n e a r  system 
and the  navigation system equations a re  only approximately l i n e a r .  However, 
f o r  t he  purposes of t h i s  report  it i s  assumed t h a t  t he  l i n e a r  approximation i s  
exact and the  covariance matrix of estimation e r ro r  computed by means of the  
Kalman f i l t e r  equation is ,  therefore,  a t r u e  measure of system performance. 
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Consider first t h e  t r u e  covariance matrix of estimation e r rors .  This 
matrix can be updated from the  time of one observation t o  the  time of the  next 
by 


where the  - and + superscr ipts  refer t o  before and after an observation, 

respectively; P+(to) is  given as an i n i t i a l  condition; and 

obtained by integrat ing the  perturbation equations of motion.

cP(tK+l; t K )  is  


The estimated state 2 i s  a l so  integrated from t K  t o  t K + 1 .  A t  t he  t i m e  
of an observation the  estimated t r a j ec to ry  i s  updated using an estimated 
weighting matrix as 

;r+ = ;r- + K e s t ( Y  - (19) 

Here y represents t he  observation and H is  the  matrix of p a r t i a l  differen­
t i a l s  r e l a t ing  deviations i n  the  t r a j ec to ry  t o  deviations i n  the  observation. 
Thus H2- represents t h e  expected value of the  observation based on previous 
data; Kest is  a weighting matrix which is  expected t o  be an estimate of  t he  
optimum weighting matrix. 

A s  a r e s u l t  of  t h i s  observation, the  t r u e  covariance matrix P i s  updated 
as 

This equation i s  va l id  f o r  a nonoptimal system (see r e f .  7,  eq. (72))and gives 
the  covariance matrix associated with the  s t a t e  estimation obtained i n  equa­
t i o n  (19)f o r  any Kest.  

Equations (18) and (20) could not be used i n  an ac tua l  system t h a t  used 
approximate t r ans i t i on  matrices, since the  t rue  t r a n s i t i o n  matrices would not 
be avai lable .  For t he  purpose of  t h i s  study, however, these equations were 
used t o  define t h e  t r u e  s t a t e  of a f f a i r s .  

The ac tua l  system w i l l  use the equations f o r  a t r u e  optimal system, but  
w i l l  use an estimate of  t he  t r a n s i t i o n  matrix, qest(tK+l;tK) computed by means 
of  the  F-series ( o r  any other desired method). These equations will then pro­
duce only an estimate of the  covariance matrix and weighting matrix. 

The procedure starts by updating the  estimated covariance matrix Pe t 
by means of equation (181,but  using yest and Pest ,  where Pzs t ( to)  = P+?to).
The estimated s t a t e  2 is updated t o  the  appropriate time by integrat ion and 
equation (19) i s  used exact ly  as given t o  determine the  new es t i .mte .  The 
weighting matrix required i n  equation (19)t o  update t h ?  estimated t r a j e c t o r y  
is  given as 
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and PZst i s  given as 

If the  true covariance matrix P i s  used i n  equation (21), t he  resu l t ing  
Kest w i l l  be optimum. If t h i s  optimum Kest  i s  then subst i tuted into equa­
t i o n  (20),t h i s  equation w i l l  then simplify and have t h e  same form as 
equation (22).  

In  order t o  g e t  an indicat ion of the nonoptimality caused by t h e  use of 
t h e  approximate t r a n s i t i o n  matrix, t he  t r u e  matrix, P, i s  compared with t h e  
estimated matrix, Pest. To make t h i s  comparison, t he  quant i t ies  Pr and P, 
w i l l  be determined. These a r e  defined as follows: The covariance m a t r i x  is  
par t i t ioned in to  four 3 X 3 submatrices. The square root  of the  t r ace  of t h e  
upper l e f t  submatrix is  Pr and t h a t  of  t he  lower r igh t  is  Pv. Thus, Pr 
represents t he  rms posi t ion deviation of the  estimated t r a j ec to ry  with respect 
t o  the  ac tua l  t r a j e c t o r y  while Pv represents t h e  corresponding ve loc i ty  
deviations.  Similar quant i t ies  from Pest, t h a t  is, Prest and Pvest, a r e  a l s o  
determined. 

Trajectory 

I n  order t o  t e s t  the  navigation accuracy using an approximate calculat ion 
of  t he  t r ans i t i on  matrix, a sample circumlunar mission was chosen f o r  a refer­
ence. The pa r t i cu la r  reference t r a j ec to ry  chosen has a 70.68 hour f l i g h t  time 
t o  the moon with a perilune a l t i t u d e  of 187 km. It has a f r ee  re turn  t o  t h e  
ear th  a r r iv ing  a t  perigee a t  144.87 hours after launch and entering the  ea r th ' s  
atmosphere near the  center of  the  entry corr idor .  The navigational observa­
t ions  used were theodol i te  measurements, which determine the  r igh t  ascension 
and decl inat ion o f  the  ear th  or  moon as seen from t h e  vehicle.  Appropriately 
chosen sextant data  would give e s sen t i a l ly  the  same r e s u l t s .  There were 
45 observations made on the  outbound leg  of the  mission and 39 on the  re turn  
l e g .  The observations were grouped i n  a manner very similar t o  t ha t  shown i n  
f igure 2 of reference 7; t h a t  i s ,  observations of t he  ear th  were grouped 
together,  as were those of the  moon, and some of both types were made shor t ly  
before each of the  th ree  expected ve loc i ty  corrections on each leg .  

RESULTS AND DISCUSSION 

The purpose of t h i s  sect ion is  t o  discuss t h e  operation of the navigation 
system using approximate t r ans i t i on  matrices and t o  consider the  e f fec ts  of 
t he  various s implif icat ions.  F i r s t  of a l l ,  we w i l l  discuss the  accuracy of the  
F-series t r ans i t i on  matrices.  Then we w i l l  consider the  s tep s i ze  required f o r  
use with the  F-series expansions, and w i l l  compare the resu l tan t  covariance 
matrices with those obtained using the  exact t r a n s i t i o n  matrix in  a t r u l y  
optimum system. The e f f ec t  of grav i ta t iona l  perturbations is then considered 
followed by a b r i e f  discussion of computer storage and time requirements. 
Final ly ,  t he  e f f ec t  on guidance w i l l  be considered. 
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Transi t ion Matrices 

In  t h e  computer program t h e  t r u e  t r a n s i t i o n  matrix, calculated by 
integrat ing the  per turbat ion equations, w a s  avai lable ,  as w e l l  as the  F-series 
approximation. These two matrices were compared (using the  norms of the  sub-
matr ices) ,  and the  percentage difference between t h e  estimate and the  t r u e  
t r a n s i t i o n  matrix var ied from 1t o  0.1 percent f o r  long in t e rva l s  where many 
t r a n s i t i o n  matrices m u s t  be mult ipl ied together and from 0.1 t o  0.001 percent 
f o r  short  i n t e rva l s  where a s ingle  matrix can be used. McGee ( r e f .  8) states 
t h a t  adequate navigation can be performed i f  t he  t r a n s i t i o n  matrices fo r  shor t  
i n t e rva l s  are calculated using only 16 b i t s  or 0.003 percent e r r o r .  The 
F-series t r a n s i t i o n  matrix has about t h i s  e r ro r  f o r  t he  short  i n t e rva l s  and 
thus one would expect t h a t  it would provide adequate navigation, as indeed it 
does. 

Ef fec t  of Step Size 

In  order t o  determine t h e  e f f e c t  of using various t i m e  in te rva ls  i n  calcu­
l a t i n g  the t r a n s i t i o n  matrix from the  F-series,  a comparison w a s  made between 
Pest, t he  approximate covariance matrix of e r ro r s  i n  the estimated t r a j ec to ry ,  
and P, t he  t r u e  covariance matrix. The F-series i t s e l f  w a s  calculated omit­
t i n g  the  sun and oblateness terms, but including a t  a l l  times both the  ea r th  and 
moon terms t o  provide a smooth t r a n s i t i o n  from earth-centered t o  moon-centered 
conics. 

A study of Pr and P, from both the  t r u e  and estimated covariance m a t r i ­
ces w i l l  then show the adequacy of t he  t r a n s i t i o n  matrix approximation. A 

p lo t  of Prest  /Pr and Pve s t/Pv f o r  both outbound and re turn  l e g s  of t he  c i r ­
cwnlunar t r a j e c t o r y  is  shown i n  f igure  2 f o r  four d i f f e ren t  values of k. 
Values of P and Pest were ava i lab le  only a f t e r  an observation. The gaps i n  
the  curves represent periods of no observations. Ideal ly ,  of course, these 
r a t i o s  should be constant a t  un i ty .  

It can be seen i n  f igures  2 ( a )  and (b)  t h a t ,  a t  l e a s t  u n t i l  perilune,  a 
value of k = 0.1 gives qui te  good r e s u l t s  and t h a t  the  accuracy fa l l s  off as 
k increases,  so t h a t  a t  k = 1.0 the r e s u l t s  a r e  poor. After perilune,  how­
ever,  a l l  of these curves deviate  from unity,  and data not shown indicate  t ha t  
t h i s  t rend continues so  t h a t  a t  perigee the  r a t i o  i s  qui te  far from uni ty .  
However, i f  the  run is r e s t a r t ed  a t  perilune with P = Pest = nominal values, 
then as shown i n  f igures  2 ( c )  and (a ) ,  the r e s u l t s  a r e  very similar t o  those 
of t he  outbound leg ,  w i t h  k = 0.1 qui te  good and k = 1.0 f a i r l y  poor. 

It i s  apparent, however, t h a t  smaller values of k a r e  required f o r  
adequate r e s u l t s  a f t e r  passing per i lune.  If the  F-series is  calculated a t  
every in tegra t ion  s tep ,  which implies t ha t  k i s  small, t h e  r a t i o  of Pest/P 
remains close t o  1 .0  for t h e  complete round t r i p .  Thus, these  smaller values 
of k i n  the  v i c i n i t y  of t he  moon allow a successful per i lune passage. How­
ever, t h i s  gives  a considerable increase i n  the amount of computation. If the 
vehicle  is  returning from a lunar  o r b i t ,  it would be na tura l  t o  r e s t a r t  t h e  
Pest matrix a t  i t s  nominal value so t h a t  extremely small values of k would 
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not be required.  In  a fly-by mode, however, t h i s  would not be na tura l .  
Nevertheless, a t  perilune a nominal P matrix could be inser ted i n  the  com­
puter,  which would allow successful computations during the  re turn  f l i g h t .  

These results indicate  t h a t  t h e  assumptions made i n  determining 6tmX 
(eq. (14))  a r e  reasonable, and tha t  a value of k = 0.23 gives reasonably 
accurate results. This value is  used as a standard i n  the  remainder of t h e  
discussion. 

Using t h i s  value of k,  one must multiply several  short  t r a n s i t i o n  matri­
ces together t o  cover some of t he  l a rge r  required in te rva ls .  For instance, 
30 short  t e r m  matrices were required t o  generate the  f i rs t  matrix from t = 0 
t o  2.3 hours, and 13 were required during the  las t  48 hours t o  per i lune.  Most 
of t he  time a s ingle  matrix w a s  adequate t o  cover the  time in te rva l  between 
observations. 

Comparison With Optimum System 

It i s  of i n t e re s t  t o  compare the  r e s u l t s  of using the  approximate t r ans i ­
t i o n  matrices with the  r e s u l t s  o f  using t h e  t rue  matrices i n  a t r u l y  optimum 
system. This comparison i s  made i n  f igures  3 and 4. In  f igure 3, t he  t rue  
t r ans i t i on  matrices and the  optimal K matrices were used throughout. Thus 
Pest and P a r e  equal and optimum. The curves represent Pr and Pv, and t h e  
points represent t he  navigation e r ro r  of the  estimated t r a j ec to ry  f o r  a s ingle  
typ ica l  f l i g h t .  The navigation e r ror  i s  supposed t o  be a typ ica l  member of 
t he  ensemble f o r  which P i s  t h e  rms value.  It can be seen tha t  t he  points  
could eas i ly  represent a typ ica l  member.-

In f igure  4 t he  estimated t r ans i t i on  matrix was used, and Prest and Pvest 
a r e  p lo t ted  along with the  associated navigation e r ro r .  The curves i n  f ig­
ures 3 and 4 a r e  similar with only small differences,  indicat ing tha t  Pest  
i s  a good measure of the optimum P.  The navigation e r ro r  points a re  a l so  
similar. This i s  t o  be expected since iden t i ca l  sequences of  simulated obser­
vation e r rors  were used i n  each case, and the  covariance matrices a re  a l so  
s imi la r .  

Effect of Two-Body Calculations 

I n  the  previous r e su l t s ,  both the  moon and ear th  grav i ta t ion  terms were 
used a t  a l l  times t o  compute the  F-series. It might be simpler t o  use only 
one o f  these terms and t o  switch terms a t  the  sphere of influence. These two 
techniques a r e  compared f o r  k = 0.25 i n  f igure 5 .  The p lo t s  of  Pest/P for 
the  t w o  cases a r e  e s sen t i a l ly  ident ica l  f rom launch t o  t he  sphere of influence 
of t h e  moon. Following t h i s ,  there  i s  some difference,  especial ly  i n  f ig­
ure 3 ( b ) ,  which tends t o  decrease with time. This same ef fec t  i s  a l s o  notice­
able  during the  re turn  t r a j ec to ry .  In general ,  e i t he r  technique w i l l  work 
adequately, but t he  three-body technique gives s l i g h t l y  b e t t e r  results. 
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Effect  of Oblateness and Solar Gravitation 

It is  a l so  of i n t e r e s t  t o  ascer ta in  the  so la r  and oblateness e f f e c t s .  In 
t ab le  I the  s i ze  of these terms is  given along with those of t he  ear th  and 
moon. The sun's e f f ec t  is  always less than t h a t  of e i t h e r  t he  ear th  or t h e  
moon, and so w i l l  have considerably l e s s  influence than t h a t  shown i n  f igure  5 
f o r  t he  difference between two- and three-body calculat ions.  The oblateness 
t e r m  i s  l a rges t  a t  perigee, a t  t h i s  point,  f o r  k = 0.22, t he  second term i n  the 
ser ies ,  which is  being neglected, i s  about 0.6(10)~,or about 40 times l a rge r  
than the  oblateness term. Since the  r e l a t i v e  s i ze  of the oblateness t e r m  
decreases rapidly on leaving perigee, it is apparent t ha t  it will have less 
e f f ec t  than truncating t h e  s e r i e s .  In  conclusion, it appears t ha t  t he  so l a r  
grav i ta t ion  and ea r th ' s  oblateness w i l l  have very l i t t l e  e f f ec t  on the  overa l l  
r e su l t s .  

Computer Storage and Time Comparison 

Since the F-series calculat ion of the  t r a n s i t i o n  matrix appears t o  give 
reasonable r e s u l t s ,  it i s  of i n t e r e s t  t o  determine the  computer storage and 
computational time requirements fo r  comparison with the  corresponding require­
ments of t he  technique where the  perturbation equations a re  d i r e c t l y  integrated.  
Computer programs a re  avai lable  fo r  both  techniques, and a l imited amount of 
data  i s  avai lable  concerning storage and timing. However, both programs a r e  
wri t ten i n  Fortran IV, and no optimization of e i t h e r  has been attempted. Thus, 
the  storage and time requirements given here m u s t  be considered approximate. 
For each of  these two programs the  storage spec i f i ca l ly  required f o r  the cal­
culat ion of the  t r a n s i t i o n  matrix and the  time required f o r  performing these 
calculat ions during the  outbound l e g  o f  t he  mission were determined and a r e  
presented i n  the  following tab le :  

Storage, words Time, min 
F- se r  ies 600 	 (k  = 0.1) 1/4

(k = 0.25)  1/5 
Perturbation integrat ion 1400 3/4 

It can be seen t h a t  the  F-series takes somewhat l e s s  than half  t h e  
storage required f o r  the  perturbation integrat ion technique. The time required 
t o  integrate  the  perturbation equation i s  constant a t  about 3/4 of  a minute; 
whereas the  time required f o r  the F-series calculat ions i s  a function of k .  
In  the  extreme where t h e  F-series is  evaluated a t  every integrat ion s tep,  t he  
time required i s  about 3/4 minute. Thus, the  F-series approach r e s u l t s  i n  
savings i n  both storage and t i m e .  

Effect  on Vehicle Guidance 

It has been shown t h a t  an approximate t r a n s i t i o n  matrix can be used 
s a t i s f a c t o r i l y  f o r  navigation i n  c i s lunar  space, that  i s ,  f o r  determining t h e  
vehicle 's  present pos i t ion  and veloci ty .  Once the  navigation i s  completed, the 
r e s u l t s  a r e  used i n  one o f  several  ava i lab le  guidance procedures t o  determine 
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what, if any, correct ive maneuver i s  required so  t h a t  t h e  vehicle w i l l  
s a t i s f a c t o r i l y  complete the  mission. Using the  t r a n s i t i o n  matrix f o r  guidance 
as w e l l  as navigation has been studied i n  previous research (refs. 2, 6 ) .  In 
those s tudies  it was assumed t h a t  t he  vehicle  would be required t o  a r r ive  a t  a 
desired specif ied point a t  a pa r t i cu la r  t i m e .  The t r a n s i t i o n  matrix, from t h e  
present t o  t h e  end point,  was obtained (ref.  2 )  by multiplying many short  
individual matrices together .  This guidance scheme w a s  used i n  the  present 
study i n  two ways: F i r s t ,  t h e  approximate t r a n s i t i o n  matrices were used for 
navigation only, and t h e  t r u e  t r a n s i t i o n  matrices w e r e  used i n  the  guidance 
scheme. In  t h i s  case, t he  standard deviation of t h e  miss at arr ival  w a s  about 
t he  s a m e  as previously reported, namely, about 2 k p  i n  a l t i t u d e  and 20 km i n  
range. This indicates  t h a t  t h e  approximate t r a n s i t i o n  matrix provides adequate 
navigation. Second, it w a s  desired t o  see the  e f f e c t  of using t h e  approximate 
t r a n s i t i o n  matrices i n  the  guidance sect ion a l so .  I n  a study of word length 
requirements ( ref .  8) ,  it w a s  concluded t h a t  t h i s  guidance scheme would be 
usable with only 16-bit accuracy i n  the  computation of t he  t r ans i t i on  matrices. 
The approximate matrices used here have about 16-bit  accuracy fo r  the  majority 
of t h e  time, but  a t  the  beginning and at t h e  end, t h e  accuracy decreases t o  
about 6 b i t s .  When these approximate t r a n s i t i o n  matrices were used in  the  
guidance scheme, the  standard deviation of t he  a l t i t u d e  miss was about 1000 km, 
indicating t h a t  these t r ans i t i on  matrices a re  unsat isfactory f o r  t h i s  purpose. 

Thus, one can conclude t h a t  these approximate t r ans i t i on  matrices a r e  
qui te  s a t i s f ac to ry  f o r  use i n  navigation, but t h a t  a guidance scheme should be 
selected which does not use them. 

CONCLUSIONS 

This report  shows t h a t  a simplified technique f o r  computing the  t r ans i t i on  
matrices i s  avai lable  which provides adequate navigation i n  c i s lunar  space and 
which uses l e s s  computer storage and l e s s  computation time. These t r ans i t i on  
matrices a re  computed as a function of t he  grav i ta t iona l  a t t r a c t i o n  along the  
estimated t r a j ec to ry  and so  do not require a reference t r a j ec to ry .  

The gravi ta t iona l  a t t r a c t i o n  can be computed using the  standard two-body 
equations. The e f f ec t  of the  e a r t h ' s  oblateness and the  sun can be neglected. 
In going t o  the  moon, the  moon's a t t r a c t i o n  can e i t h e r  be included a l l  t he  
time, or t he  grav i ta t iona l  center can be switched a t  the  lunar  sphere of 
influence. 

The maximum time over which a s ingle  calculat ion of t he  grav i ta t iona l  
a t t r a c t i o n  can be used t o  generate the  t r a n s i t i o n  matrices i s  eas i ly  calculated. 
Where a longer time in t e rva l  i s  required, several  individual t r ans i t i on  
matrices can be computed and then multiplied together t o  obtain the  overa l l  
desired matrix. 

Ames Research Center 
National Aeronautics and Space Administration 

Moffett Field,  Calif . ,  Feb. 28, 1966 



APPENDIX 

DEFINITION O F  SYMBOLS 

a 

‘i j 

F 

F* 


IIFII 
fij 

H 


I 

J 

K 

k 

0 

P 

Pr 

pv 

v 

equator ia l  radius  of t h e  ea r th  

coef f ic ien t  of t h e  i j t h  term of a two-dimensional power series 

gradient of t h e  g rav i t a t iona l  a t t r a c t i o n  vector 
r- 7 

, t h e  matrix of coef f ic ien ts  in the  d i f f e r e n t i a l  equation of 

motion of t he  state vector 

norm of the  F matrix 

the  i j  element of t he  F matrix 

matrix of  p a r t i a l  der iva t ives  of the observed quant i ty  w i t h  respect t o  
the  state var iables  

iden t i ty  matrix of su i tab le  dimension 

coef f ic ien t  of t h e  second harmonic of t he  ear th  poten t ia l  

optimal weighting matrix 

constant used i n  determining allowable s tep  s i z e s  

n u l l  matrix of su i tab le  dimension 

covariance matrix of estimation e r ro r s  

rms posi t ion deviation of t h e  estimated t r a j ec to ry  w i t h  respect t o  the  
ac tua l  t r a j ec to ry  

rms veloc i ty  deviation of t he  estimated t r a j ec to ry  with respect t o  the  
ac tua l  t r a j ec to ry  

covariance matrix of observation e r rors  

PI 
T 

(r1,r2,r3) ,pos i t ion  vector of t he  vehicle 

time 
T 

(v=,vz,v3) ,veloc i ty  vector of t h e  vehicle 



X 

8 

6 t  

IJ. 


cp 

I 

e 

est 

i J jJ k  

J 

m 

0 

S 

s t a t e  vector representing posi t ion and ve loc i ty  deviations from the  
reference 

state vector of estimated deviation from the  reference 

t i m e  dif ference over which t h e  t r a n s i t i o n  matrix is  used 

maximum allowable value fo r  6 t  

constant of grav i ta t iona l  a t t r a c t i o n  

t r a n s i t i o n  matrix r e l a t ing  deviations at one time with those a t  
another 

submatrices of cp 

Notational Conventions 

time der iva t ive  of ( ) 

transpose of matrix ( ) 

inverse of  matrix ( ) 

Subs c r i p t  s 

ear th  

e s ti m a t  ed 

indices 

ear th  oblateness 

moon 

i n i t i a l  condition 

SUn 

Superscripts 

value before an observation 

value a f t e r  an observation 
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TABLE I.- TBE NORM OF THE COMPONENTS OF F VERSUS LOCATION 

I N  CISLUNAR SPACE 


Vehicle loca t ion  IlFell IlFmIl 

Perigee 2.44(10)4 1.41(10)-3 
66,000 km from ea r th  2.20 2.36(10)-3 
Lunar sphere of influence 9193 .270 
Perilune .115 1.49(10)~ 
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Figure 1.-Typical elements of t h e  t r a n s i t i o n  matrix versus i n i t i a l  time with 
f i n a l  time 1 .2  hours l a t e r .  
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